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A cohomologid approach to the Batalin, Lavrov, Tyutin 
covariant quantization of irreducible gauge theory 

Liviu Tatarutt 
hstilut R)r Theoretische Physik, Technixhe Universifit Wien. Wiedner Haupatrasse M O .  
A-1040 Wen, Austria 

Received 21 Febmary 1995 

Abstxact. The anti-BRST transformation for an a r b i  ineducible gauge invariant action is 
implemented in the usual Batalin-Vilkovisky (BV) approach. This is done without duplicating 
the gauge s y m k i e s ,  but rather by duplicating all fields and antifields of the theory. h this 
way the Sp(2)-cova~iaut quantization can be aemmplished in the standard BV approach and its 
equivalence with the Batalin-Lavmv-’@utin (Bm) approach is proved by a special gauge-fixing 
pmdure .  

1. Introduction 

Without any doubt the most popular and poweful method for the covariant quantization 
of the gauge field systems is the BRST approach [l-51 (see [6] for a good review of the 
most important results in this field), both in the Hamiltonian and Lagrangian formalisms. It 
encompasses the Faddeev-Popov quantization and BRST symmetry, discovered in the context 
of gauge theories. However, in all these formulations the so-called non-minimal sector of 
the BRST transfomtions, which is crucial for all applications, is very difficult to understand 
and to be fixed. In order to overcome these conceptual problems various authors [7-251 
have recently tried to employ the ~ & B R S T  (Sp(2)) symmetry, thereby identifying the non- 
minimal sector with part of the minimal one in a natural way. 

In the Hamiltonian formalism [7,9,13] the  anti-^^^^ symmetry has been introduced by 
duplication of each first class constraint in an extended phase space. On the other hand, the 
Lagrangian  anti-^^^^ formalism looks quite different when it is compared with the usual 
BV formulation [1,2]. Not only the field content and form of the. master equation but also 
the gaugefixing process itself is very different, and it seems to be very difficult to see the 
equivalence of both methods. 

In this paper we show that it is possible to reformulate the ~ - B R S T  formalism in the 
usual Bv framework just by duplication of all the fields and antifields of the theory and 
by using homological perturbation theory (HFT) [4,6]. The crucial point for HFT is the 
construction of the Koszul-Tate differential SK and to generate its acyclicify. In fact, the 
acyclicity of SK, which acts in the space of antifields, has been used in [4,51 (see also [26]) 
to prove the existence and uniqueness of the solution of the master equation. This property 
of 8~ determines the spec” of the antifields and therefore the spectrum of the fields, 
due to the symmetric structure of fields-antifields. In ow approach we shall work only 
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with field-antifield pair and we shall reduce the construction proposed in [lo-12,141 to the 
stMdard one. In fact we will show that the antifield-antibracket formulation of the anti- 
BRST transformation is in fact the usual EV quantization if we introduce an extra assumption 
that all fields and ghosts occur in pairs and enter into the quantum action as a sum. 

The basic ingredient of our construction is the observation that if one duplicates the 
antifields they form a redundant basis of vectors [3], and in order to identify the algebra of 
polynomials in fields and antifields with the algebra of multivectors [28] it is necessary to 
set Q:, = @:* in the former algebra,where @L denotes the set of antifields of the theory. 
Of course this task can be achieved by hand, but the most natural way is to suppose that 
the ERST differential does this job. This assumption is quite strong and implies precisely 
the occurrence of the. fields in the quantum action only as the sum. 

Let us remark that a proposal for the duplication of fields has already appeared in the 
literature [17-221. However, we believe that our approach is only superficially similar, 
since it tries to establish a close connection with the original approach proposed by Batalin 
and Vilkovisky [1,2]. Our paper is organized as follows. In section 2 we shall give a short 
review of the main points of the standard B v  theory with emphasis on its HFT aspects. Then 
in section 3 we treat the Sp(2)-symmetric theory as a BV reducible theory. Section 4 is 
devoted to the gauge-fixing process and to a comparison with the previous theories, and in 
section 5 we shall present some ideas on the reducible theory. 

2. The standard BV theory 

In order to set the scene, let us recall the key ingredients of the standard BRST theory in 
the antibracket-antifield version or BV version. We will adopt a notation so as to establish 
more explicitly the parallel with the Hamiltonian approach developed in [13,14,24]. 

e We consider a classical system whose dynamics will be governed by an action SO(@') 
where the field @I has Grassmann parity E('@) = d.  We denote the equations of 
motion derived from SO by 

+ 
so a 
a @ j  

Gj = -(@) 

where 5 /a@j is the right derivative. Equation (2.1) defines a hypersurface X in the 
manifold of all fields r called the stationary surface [5]. 
The action SO could posses gauge invariance and in this case there exist non-trivial 
relations among the Gi: 

Gi . RL(@) = 0. (2.2) 
The set of gauge generators RA with Grassman parity c(Ri)  = E; + E ,  is assumed to 
be independent and to form a comglete set. From the completeness assumption one 
deduces that the vector fields Ri . a /a@f verify the equation 

[Ra, Q ]  -RyCi# (2.3) 
where [, I is the Lie bracket and means that the equality holds on the stationaty 
surface X. 
If gauge invariance is reducible then there exist some functions Z> with c ( Z 5 )  = 6a+car 

such that 

(2.4) Ri . Zz, 2 0. 
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The rank of reductibility may be greater than two, in which case one finds relations 
among the Z$, etc. We want to emphasize here that in spite of the fact that we have 
assumed to work with an irreducible theory, the reducibility will occur in the next 
section due to the duplication of fields and antifields. 
In what follows we shall generically denote by ( Q A ]  the collection of all fields which 
will include the ghosts for all gauge symmetries and possible auxiliary fields arising 
from the gauge fixing. Then we shall introduce the antifields Q: which play the role 
of canonical conjugate variables with respect to a Poisson-like structure defined by the 
antibracket - +A C A -  

( F , G ) = F a A . a  G - F a  .aAG (2.5) 
+ +  

where aA = a/aQA and aA = a/aQ:, and a , a denote right- and left-derivatives, 
respectively. 
The basic object of any BRST Lagrangian theory is the extended action S(QA, Q;) of 
ghost number zero, which satisfies the master equation 

(S,  S )  = 0. (2.6) 
In addition to (2.6) we have to impose boundary conditions on S in order to obtain a 
proper solution 

(2.7) 

where P denotes the projection from the extended field space { Q A ]  to the space of the 
classical fields { Q j ]  (see [26]). 
The extended action generates, through the antibracket, the BRST symmetry 

sF = (F, S) (2.8) 
for any F = F(Q, a*). The linear operator s is a differential and it is an extension of 
the Koswl-Tare (KT) differential SK defined by 

s = 8 K + " ' .  (2.10) 
The most important property of the KT differential SK is its acyclify. This means that 
its cohomology will consist only of the functions on the stationary surface C. In the 
usual BV theory the acyclycity of SK has been proved [4,5,26], but it could be imposed 
from the very beginning, and in this case it can determine the antifield structure of the 
theory. In the last case we must intmduce as many antifields as we need for killing all 
the cycle which could appear in the theory. 
The final step in BV method is the construction of a BRST invariant gauge-fixed action. 
This step is performed by introducing a gauge fermion function W(QA) that can be 
chosen to depend only on the fields Q A  

(2.11) 

For a more general setting of gauge-fixing see [16]. 
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3. The Sp(Z)-sy”etrie theory as a reducible theory 

The basic ideas of embedding an anti-BRST symmetry in the usual Bv-approach is achieved 
by splitting the (total) B E T  differential into the sum of two differentials 

s=s1+sz (3.1) 
being BRST differential and sz anti-BRST differential. Due to the fact that s is a differential 

(3.2) 
The decomposition (3.1) and equations (3.2) define the B R S T - ~ ~ ~ - B R S T  algebra From the 
general discussion in section 2 we expect that the Koszul-Tate differentials respectively 
associated with SI and sz. which are both resolutions of Cm(Z), to be anticommuting. 
This task has been accomplished in the Hamiltonian formalism [13,14] by duplicating the 
constraints of the theory G&, p )  = 0, or more precisely by simply repeating them a second 
time. The corresponding description of the constrained surface is no longer irreducible and 
we have to use the general theory of reducible constrained systems 141. However, even in 
this case we still have a canonical formulation of the theory in which all variables occur in 

On the other hand, in the Lagrangian formalism, in its initial formulation by Batalin, 
Lavrov and Tyutin [10-12] the symmetry of the pairing of fields with antifields is destroyed, 
and it is therefore hard to imagine how one could introduce a natural symplectic structure 
in this case. In this paper we shall try to recover the field ++ antifield symmetry and we 
shall show that the Sp(2)-extended BRST theory is in fact a reformulation of the BV theory 
in the spirit of duplication of the constraints. As a matter of fact, in the framework of 
HFT we can consider the equations of motion (2.1) as some constraints which allows us to 
apply the standard technique [4,5]. Thus the extended Sp(2) BRST symmetry amounts to a 
duplication of the equations of motion 

we have 
2 -  2 s1 - sz = s1 . sz + sz ’ s1 = 0. 

pairs. 

GI -+ (Gj. Gj). (3.3) 
But this duplication can be accomplished by simply duplicating the fields Q j  -+ ( @ I ,  @ I z ) .  
In order to have a simple duplication of the equations of motion Gj we must suppose that 
SO has a special dependence on @“(a = 1,2), namely 

(3.4) so = So(Qjl + W).  
Starting BV quantization with this action, we have to introduce two antifields Q~a(a = 1.2). 
But in this case the action SO has an additional gauge symmetry, Qj‘ + Qja  + ( - l )%j,  
which has nothing to do with the initial gauge symmetry. This additional gauge symmetry 
implies the existence of new antifields, which will ensure the acyclicity of SK. These new 
antifields will be denoted by [$}. The Koszul-Tate differential (2.9) should be modified 

(35) 
The remarkable point here is the fact that (3.5) implies the equality of @TI and Q7z in 

the Koszul cohomology. We will suppose that this SOS of equality occurs not only for the 
antifields Q& with respect to the Koszul cohomology, but also for all antifields with respect 
to BRST cohomology. In other words we shall suppose that all antifields and fields occur in 

- by 
&Qj = Q* J z  - Qpf J1’ 

pairs 

Q A O ,  (a = 1.2) 
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where we have used the index A as a common index for all fields and ghosts which could 
OCCUT in the theory. The theory must be developed in such a way that the antifields in any 
pair @&} coincide in the BRST cohomology. But in this case the quantum action ST 
must have the form 

=a 
S T = @  ' (@:z -~ i ] )+s (@~,@~,S)  (3.6) 

--4 
where 0 are the fields corresponding to the antifields TA the latter being the generators 
of the desired BRST cohomology. This fact can be seen easily, if one writes down the BRST 
transformation of S A  

+ 

(3.7) 

But this form of ST is quite restrictive, since it has in addition to obey the master equation. 
Thus, by virtue of (3.5). the master equation (ST, Sr) = 0 is equivalent to the set of 
equations 

- a ST 
SQA =-=A =@:I - Oi2. 

a@ 

and 

(3.9) 

Equations (3.9) imply that S must have a special dependence on the fields (Qh}: 

s s (QA1 f QA2, @.Ao.SA) . (3.10) 
The BRST tranSf0mtiOn generated by ST takes the form 

SF = ( F , S )  + V F  (3.11) 

where F = F ( Q ,  @*,&) and V is a nilpotent operator introduced by Henneaux 131 which 
has the form 

The master equation (2.6) can now be solved in the usual way by expanding S with 
respect to the grading of the Koszul-Tate differential 151, i.e. with respect to the antighost 
number. However, as we have already pointed out, this differential must be acyclic and its 
acyclicity determines the antifield content of the theory. 

With the general results (3.6) and (3.10) we can now start to construct the Koszul-Tate 
differential 8~ for an irreducible theory and to determine the antifield spectrum. We want 
to emphasize again that simply demanding that the differential 8~ be acyclic forces the 
antifield spectrum to be just the correct one 151. First of all, the first equation from (2.9) 
now becomes 

= -Gj. = -So.jo a = 1,2 (3.12) 

and the equality of these two equations implies (3.4). On the other hand, if & posseses a 
gauge invariance, one finds some additional non-trivial cycles. Because the functions Ri 
are all independent a basis of these non-trivial cycles must contain the terms 

@pf ,2 -@pf  ,I 9. R.5 (3.13) 
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Therefore, in order to recover the acyclicity of SK we have to add (following Tate) additional 
variables, which are just extra antifields in the same way as in a reducible theory [SI. The 
antifields 5j introduced to kill the first cycle from (3.13) play a special role and they are 
called 'bar' fields (or antifields). They have already been introduced in (3.5) and therefore 
appear in the general form of the solution of the master equation (3.6). The antifields 
are introduced to kill the cocycles Q;,, . RL, i.e. 

 KC:^^^ = @& . RL. (3.14) 

One clearly has 8; = 0 and we have added an extra Sp(2)  index to c:alb since we take into 
account the fact that all antifields must occur in pairs and both their ERST and Koszul-Tate 
(given by BK) transformations must be equal. But in this case, in spite of the fact that we 
started from irreducible theory, the procedure must be continued and we have to add three 
independent additional terms to the basis of non-trivial cycles (3.13). which may be chosen 
as 

c&o -cZi1. C2;Zr -&z+Tj . R L ,  
In order to recover the acyclicity of BK again, one must introduce further antifields Fan and 
B& and define 

(3.15) 

For the irreducible theory we need only one extra 'bar' antifield za such that 
- 

B K B ~  = Biz - BZI. (3.16) 

The demand that the differential 6~ be acyclic automatically forces the antifield spectrum to 
be just a duplication of the correct set of minimal and non-minimal sectors of the standard 
EV theory [1,2]. 

In conclusion we can say that the process of defining the Koszul-Tate differentia1 
consists of two steps: in the first step we have killed the cocycles which contain only 
old antifields and in the second step we have killed the cocycles containing new antifields, 
introduced in the first step. This process is different from the one used in the standard EV 
method described in section 2.  

Having settled the complete form of the Koszul-Tate differential we can now see whether 
it allows a decomposition SK = 61 +62 necessary for any Sp(2)  theory. This can be verified 
simply by inspection if one defines the following differentials: 

(3.17) 

and 

& T A  = (-1)WZ (3.18) 

where A = ( j ,  cub, a) and cab is the invariant tensor of the Sp(2) group with cL2 = -cZ1 = 1 
and d' = cZ2 = 0. It is easy to check that the quantum action S must start as foUows: 

S = Si + Q~nR~(c'lla + cdl") - ( E ' ~ c & ~  - @jRi)(B" + Ba2) t.. . . (3.19) 
- 
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Hitherto we have not tried to make any distinction between the antifields Qi, and 
(P>z. But this distinction is crucial in any Sp(2)-covariant quantization. Therefore we sM1 
ascribe the following values of the ghost number to the antifields: 

a = 1,2. 1 gh(Qia)  = (-1)' -gh(QA)  
gh(*A) = -gh((PA) 

(3.20) 

Now if we apply the general formalism of HFT, developed for the usual theory in 151 or [4] 
one can conclude that (3.9) not only has a solution but it can also be taken to be of bidegree 
(0,O) in the conventions intrcduced by Wgoire and Henneaux 113,151. 

Taking into account the ghost numbers of the fields and antifields, any antibracket can 
be split into two parts 

(3.21) 
where (A, B)d (a = 1,2) is the antibracket (2.5) built with the pair ( (Pan,  4 3  They 
have different ghost numbers and the master equation splits into two equations 

(3.22) 
where 

(A, B )  = (A ,  B)' +(A,  B)' 

$(S. s)' + vas = 0 

(3.23) 

Moreover the ERST differential s splits as in (3.1) with 
S. = a(., s)' + v o  a = 1,2. (3.24) 

For the irreducible theories with a closed algebra, we can find an exact and rather 
simple solution of the master equation. Such theories are characterized by the fact that 
the algebra of their generators (2.3) closes off the stationary surface z' and the solution of 
any equation of the form R:Xu = 0 is X' = 0. This is not a big restriction since the 
majority of the theories relevant to practical application belong to this class (e.g. gravity, 
supergravity, Yang-Mills theory, Chern-Simons theory, etc). From the point of view of the 
usual ERST quantization of all these theories, the typical fact is that the master equation 
with the standard boundary conditions 

(3.25) S = So+ (PT. RL. c' f.. . 
has a very simple solution 

s = so + a;.  d. cU + ;c;c;,,c'.~ + E .  B~ 

=~s, + Q>.  ( S Q A )  

where the field-antifield structure of the theory is given by 
(3.26) 

The initial fields [ Q j ]  and the corresponding antifields [QT} with gh(Qj )  = 0 and 
gh(Q;) = 1 with the BRST symmetry 

s @ j  = R; . (3.27) 
The ghosts and antighosts [col, e;] with g h ( P )  = 1 and gh(c:) = -2 with the BRST 

(3.28) 
The non-minimal sector with the ghost fields and antifields conjugate with e', [F, z] 
and the Nakanishi-Lautrup fields and antifields { B e ,  BZ} with the BRST symmetry 

s P = B a  sB'=O. (3.29) 

sy-ehy 
se a -1 - ZC.5.Y .x 
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From the point of view of the extended BRST quantization the field-antifield structure 
of these theory and the boundary conditions are different. 

Instead of the initial fields ( @ l ]  we have the pair of fields {@le, a = 1.2) and their 
antifields {@3. 
The ghosts and their conjugate occur now together as {cmalb] with the corresponding 
antifields ( c&,~} .  
The Nakanishi-Lautrup fields occur in pairs {Baa] and correspond to the antifields 
Ka1. 
In addition, in the extended theory we must introduce the 'bar' fields [6j, &, &}. 

The master equation (2.6) with the boundary conditions (3.19) yield 

s SO f @h8a6A + !i6ab&As.qsb6A (3.30) 

where 

S'Bub = - 1 p  z BY $E)'. - ft(-l)V(2c" YB.1 .Rj p + C a  YU C" BP )EPbtBaFC€cd 

= Rj v a l b  
. ' C  

(3.31) 
sac=blc = -€ab+ - ?.cu p b p ,  

2 BY 

and we have used the tilde (-) as an abbreviation for all the sum of fields pair 
&A = @A1 + @A2. 

A direct verification shows that (3.30) with (3.31) is indeed a solution of the master 
equation (2.6). In the solution of the master equation we have used the Jacobi identity 

(-l)CP'"(C~)',jR~+C~~C~p)+cycle(B, y , p )  =O. 

4. The gauge-fixing procedure 

In the standard BV theory the gaugehxed action is obtained by the simple replacement 

where Y is a fermionic gauge-fixing function which, at least in principle, is arbitrary. 
However in the Sp(2) theory it cannot be chosen arbitrarily but must have a special form. 
Its form has been discussed by Batalin, Lavrov and Vutin [lo, 111. Unfortunately their 
approach, which is absolutely correct, is not very standard and it is difficult to see the 
equivalence with the usual BV procedure. However, Gr6goire and Henneaux [14,15] have 
shown that the BLT gauge-fixing prescription can be understood in a somewhat modified 
standard framework. However, they were forced to introduce some auxiliary fields, which 
could not entirely be justified in their framework. We will show that the BLT procedure is 
just the standard svprocedure accommodated to our formulation of BRST symmetry. 

We will try to use the gaugefixing procedure to get rid of one of the fields from any 
pairs. This can be done if we employ the freedom in the definition of fields and antifields 
up to canonical transfomations (see [26,6]). Using this freedom we may regard @Zz as 
fields and QAz as anti$elds in what follows. 

The total quantized action S, can be written as 

sT = sr(~A1 + QAZ; @'al, *>2;ZA,*A)  

=A 
= S(@*' +aAZ; @>I, @:z, 3) + @ . (@>I - '412). (4.1) 
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Taking into acwunt canonical transformations, the gauge-fixed action becomes 

Let us chose the gauge fermion @ as 

(4.3) 

where F is a bosonic function which depends only on aA1. For this choice of the fermion 
function the gaugefixed action becomes 

where we have used the notation 'a = @I. In the last equation we have been used the fact 
that the term 

=A =B 
.FAB.@ = O  

4 
where FAs = a F p A  . a@, since the fields Z A  and Q A  have opposite Grassmann 

The expression for the gauge-fixed action can be somewhat simplified and hansfomed 
into the form given by Batalin, Lavrov and Tyutin if we introduce Lagange multipliers for 
the gauge choice . 

parities. 

At the level of path integration 

+ (4* - g) . A A  (4.6) 

becomes equivalent to S, by integrating out the Lagange multipliers zA and AA. 
The action (4.6) is exactly the one used in the path integral approach proposed by Batalin, 

Lavrov and Tyutin 1101. Nevertheless, this action has been obtained here within the standard 
BV formalism, and so the equivalence between the extended ERST and usual BV formalisms 
is manifest. Therefore we can apply the standard Batalin-Vilkovisky theorem [1,2] and 
conclude that the path integral is independent of the form of the bosonic functional F. Here 
we want to emphasize that in our gauge-fixing procedure we have not introduce any new 
extra fields (see [14]), since they had been introduced in a natural way in the construction 
of the quantum action. 

5. The reducible case 

The general case of the reducible theory could be developed along the same lines, but the 
Koszd-Tate differential and the structure of the antifield spec!m in this case is much more 
involved [291. This spectrum is again obtained by killing all possible non-trivial cocycles. 
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The details will be given elsewhere, but here we want to give a simple example of how to 
construct the Koszul-Tate differential. Let us suppose that we want to quantize a reducible 
theory with one stage of reducibility. In this case the generators of the gauge transformations 
RL are not independent and they satisfy the relations 

z:! . I?: = 0. (5.1) 
In the f is t  step we have to kill the following non-trivial cocycles: 

and we have to introduce the new antifields {67, &, B&. Ea and cZlnlbc]. 
In the second step we have to kill the non-trivial cocycles 

(5.3) 
‘;lab - ‘ b b  

c:12~la - ‘:,,,a f(Cl‘7 - 
and therefore we have to introduce the new antifields &,ab and B&lb. Finally we obtain 
the last non-trivial cocycles 

B:,zIo - ~:*11. (5.4) 

and in order to kill these we introduce the ‘bar’ fields a=,,,. 
We conclude this short section with a presentation of the set of antifields which are used 

in an one-stage reducible theory in the extended BRST quantization. There are two sets of 
antifields: 

The ‘star’ antifields 
* *  

@:a = (@To; ‘Z,albc; Baa? Bu,alb). 

The ‘bar’ fields 

&A = (6j; ?ala; &,lab). 

This structllre is the same as that proposed in [lo, 111 just by using the Sp(2) invariance 
of the theory. Thus we can conclude that the acyclicity of Koszul-Tate differential and the 
hypothesis that all fields occur in the quantum action as in (3.6) lead us to an antifield 
spectrum in agreement with that introduced in [lo]. 

The detailed structure of an arbitray reducible theory and the form of the solution of 
the master equation in this case will be given elsewhere [29J. 

6. Conclusion 

We have shown that the Sp(2) version of the BRST-symmetIy, proposed by Batalin, Lavrov 
and Tyutin [9,10,11,14], can be accomplished in the standard Bv antifield-antibracket 
formalism [l, 2.61 by adopting the Koszul-Tate cohomology for the case where all fields 
are duplicated. We have’also shown that the solution of the standard master equation, with 
the boundary conditions given by the Koszul-Tate cohomology, coincide with that given 
in [lo, 7,141. Furthermore. the gauge-fixing process can be achieved by a particular choice 
of the gauge-fixing fermion in the standard BV formalism. 
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